| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) | (i) | Correct shape of (exponential) decay curve (labelled L) | B1 | Note: The curve must show a gradient of decreasing magnitude as time increases and appear to have a finite value of $V$ at $t=0$ <br> Ignore any levelling of the curve or $V=0$ towards the end |
|  |  | (ii) | Correct shape of curve (labelled H) | B1 | Note: As (i) and this curve must show a smaller time constant than (i); the initial $V$ can be different Note: One of the curves must be labelled |
|  |  | (iii) | Correct explanation in terms of constant-ratio for $V$ values for fixed intervals of $t$ | B1 | Allow $V$ is halved every half-life; $V$ decreases to 0.37 (of its initial value) after every time constant <br> Note: This can be scored on a suitably labelled sketch graph in either (iii) or Fig. 4.1 |
|  | (b) | (i) | $\begin{aligned} & \left(\text { time constant }=6.9 \times 10^{-6} \times 240\right) \\ & \text { time constant }=1.7 \times 10^{-3}(\mathrm{~s}) \end{aligned}$ | B1 | Note: Answer to 3 sf $1.66 \times 10^{-3}$ (s) |
|  |  | (ii) | $\begin{aligned} & \text { charge }=6.9 \times 10^{-6} \times 1.4\left(=9.66 \times 10^{-6} \mathrm{C}\right) \\ & (\Delta t=1 / 120=0.0083 \mathrm{~s}) \\ & \text { current }=\frac{6.9 \times 10^{-6} \times 1.4}{0.0083} \\ & \text { current }=1.2 \times 10^{-3}(\mathrm{~A}) \end{aligned}$ | C1 <br> C1 <br> A1 | Possible ecf from (b)(i) for value of total capacitance <br> Note: Answer to 3 sf $1.16 \times 10^{-3}(\mathrm{~A})$ <br> Allow: 2 marks for $9.66 \times 10^{-6} \times 60=5.8 \times 10^{-4}(\mathrm{~A}) ; \Delta t=$ 1/60 s used <br> Allow: 2 marks for $9.66 \times 10^{-6} \times 240=2.3 \times 10^{-3}(\mathrm{~A}) ; \Delta t=$ 1/240 s used |
|  |  | (iii) | The capacitors do not fully discharge (AW) <br> Any one from: <br> - Period (of switching) is (halved to) $4.2 \times 10^{-3}$ (s) (and this time is comparable to the time constant) <br> - The time constant (of the circuit) and period of mechanical switch are comparable / similar | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ |  |
|  |  |  | Total | 9 |  |


| Question |  |  | Answers | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (a) |  | The time taken for the p.d / current / charge to decrease to $1 / e$ of its (initial) value. | B1 | Allow 37\% instead of 1/e. <br> Not time constant $=C R$ on its own. |
|  | (b) |  | Any suitable values with units, eg: $5 \mathrm{M} \Omega$ and $1 \mu \mathrm{~F}$. | B1 |  |
|  | (c) | (i) | $\begin{aligned} & R=\frac{4.9 \times 10^{-7} \times 5.0}{\pi \times\left(0.06 \times 10^{-3}\right)^{2}} \quad \text { or } \quad R=217(\Omega) \\ & \text { time constant }=0.010 \times 217 \\ & \text { time constant }=2.2(\mathrm{~s}) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$ | Note: An incorrect equation here for $A$ prevents this and any subsequent marks. <br> Allow 2 marks for 0.54 (s) - diameter of 0.12 mm used instead of radius 0.06 mm . |
|  |  | (ii) | Electrons are removed from $\mathbf{X}$ or electrons are deposited on $\mathbf{Y}$. <br> $\mathbf{X}$ becomes positive or $\mathbf{Y}$ becomes negative <br> (The size of charge is the same because) an equal number of electrons are removed and deposited (on the plates). | B1 <br> B1 <br> B1 | Allow electrons move anticlockwise (in the circuit). <br> There is no ecf from the previous B1 mark. |
|  |  | (iii) | $\begin{aligned} & E=1 / 2 \times 0.010 \times 12^{2} \quad \text { or } \quad E=0.72(\mathrm{~J}) \\ & m=8900 \times\left[\pi \times\left(0.06 \times 10^{-3}\right)^{2} \times 5.0\right] \text { or } 5.0(3) \times 10^{-4}(\mathrm{~kg}) \\ & 5.03 \times 10^{-4} \times 420 \times \Delta \theta=0.72 \\ & \text { increase in temperature }=3.4\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | C1 <br> C1 <br> C1 <br> A1 | Note: An incorrect equation here for $m$ or $V$ prevents this and any subsequent marks. <br> Correct substitution into $m c \Delta \theta=0.72$; allow any subject. <br> Note: Do not penalise using diameter here again if already penalised in (c)(i). |
|  |  | (iv) | Energy or $V^{2}$ increases by a factor of 4 . <br> The (change in temperature) increases by a factor of 4 (because $\Delta \theta \propto E$ ). | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Allow the label $E$ or $W$ for energy. <br> Allow $\Delta \theta=13.6\left({ }^{\circ} \mathrm{C}\right)$ for this B 1 mark - possible ecf from (iii). |
|  |  |  | Total | 14 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (a) |  | Series branch: Using $\left(100^{-1}+300^{-1}\right)^{-1}$ and $C=75(\mu \mathrm{~F})$ capacitance $=500+75$ capacitance $=575(\mu \mathrm{~F})$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Possible ecf, if capacitance of series branch is incorrect |
|  | (b) | (i) | Time constant method: <br> $37 \%$ of 6.0 V is 2.2 V . The time taken to reach 2.2 V is equal to the time constant $\text { time constant }=60(\mathrm{~s}) \quad / \quad \mathrm{CR}=60(\mathrm{~s})$ $500 \times 10^{-6} \times R=60$ $R=\frac{60}{500 \times 10^{-6}}$ <br> resistance $=1.2 \times 10^{5}(\Omega)$ <br> Substitution method: <br> Correct values for $p$.ds and $t$ substituted into $V=V_{0} e^{-\frac{t}{C R}}$ Correct values substituted into $\ln \left(V / V_{0}\right)=-\frac{t}{C R}$ resistance $=1.2 \times 10^{5}(\Omega)$ | C1 <br> C1 <br> A1 <br> C1 <br> C1 <br> A1 | Note: Allow full credit for other correct methods <br> Allow: time constant in the range 58 s to 62 s <br> Deduct 1 mark for misreading graph followed by ecf <br> Note: If $C$ value from (a) is used, then deduct 1 mark followed by ecf <br> Eg: $2.2=6.0 e^{-\frac{60}{C R}}$ - values read $\mathrm{t} \pm 1$ small square Eg: $\ln (2.2 / 6.0)=-\frac{60}{500 \times 10^{-6} \times R}$ <br> Note: If $C$ value from (a) is used, then deduct 1 mark followed by ecf. Using $575(\mu \mathrm{~F})$ gives $1.04 \times 10^{5}(\Omega)$ |
|  |  | (ii) | $\begin{aligned} & \text { Correct p.ds from graph: } 6(\mathrm{~V}) \text { and } 3.6(\mathrm{~V}) \\ & \frac{1}{2} \times 500 \times 10^{-6} \times 6.0^{2} \text { or } \frac{1}{2} \times 500 \times 10^{-6} \times 3.6^{2} \\ & \text { energy is } 9.00 \times 10^{-3}(\mathrm{~J}) \text { and } 3.24 \times 10^{-3}(\mathrm{~J}) \\ & \text { energy lost }=5.76 \times 10^{-3}(\mathrm{~J}) \text { or } 5.8 \times 10^{-3}(\mathrm{~J}) \end{aligned}$ | C1 <br> C1 <br> A1 | Allow $V$ value to be in the range 3.5 V to 3.7 at 30 s <br> Note: Do not penalise $10^{n}$ error from (b)(ii) again here Allow 1 mark for: $\frac{1}{2} \times 500 \times 10^{-6} \times(6.0-3.6)^{2}=1.44 \times 10^{-3}(\mathrm{~J})$ <br> Note: Do not penalise use of $575 \mu \mathrm{~F}$ again. This gives a value of $6.62 \times 10^{-3}(\mathrm{~J})$ |
|  |  |  | Total | 8 |  |


| Question |  |  | Answer |  | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (a) |  | (farad = 1) coulomb per (unit) volt |  | B1 | Allow: $\mathrm{C} \mathrm{V}^{-1}$ |
|  | (b) | (i) | 1/C |  | B1 | Allow: 'inverse of $C^{\prime}$ |
|  |  | (ii) | work (done) / energy |  | B1 |  |
|  | (c) |  | Diagram: All 3 capacitors connected in series $\begin{aligned} & \frac{1}{C}=\frac{1}{100}+\frac{1}{200}+\frac{1}{500} / \frac{1}{C}=1.7 \times 10^{-2} \\ & \text { capacitance }=59(\mu \mathrm{~F}) \end{aligned}$ |  | B1 <br> C1 <br> A1 | Note: Correct symbol must be used for capacitor and at least one of the capacitance values (without the unit) must be shown <br> Allow: Answer to 1 sf <br> Note: Answer to 3sf is 58.8 ( $\mu \mathrm{F}$ ) <br> Allow: $1.7 \times 10^{-2}(\mu \mathrm{~F})$ scores 1 mark from the C1A1 |
|  | (d) | (i) | $\begin{aligned} & Q=0.040 \times 60 \\ & \text { charge }=2.4(\mathrm{C}) \end{aligned}$ |  | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Allow: 1 mark for $2.4 \times 10^{\mathrm{n}}, \mathrm{n} \neq 0$ (POT error) |
|  |  | (ii) | $\begin{aligned} & \text { energy }=\frac{1}{2} \times \frac{2.4^{2}}{0.10} \\ & \text { energy }=29(\mathrm{~J}) \end{aligned}$ |  | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Possible ecf from (d)(i) <br> Note: Answer to 3 sf is 28.8 ( J ) <br> Allow full credit for correct use of $1 / 2 V Q$ or $1 / 2 V^{2} C$; the final p.d is $24(\mathrm{~V})$ |
|  |  |  |  | Total | 10 |  |


| Question |  |  | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (a) |  | capacitance $=$ charge $/$ potential difference | B1 | Allow: p.d. and voltage <br> Not: charge per volt or coulombs per p.d |
|  | (b) | (i) | $\begin{aligned} & V=Q / C \text { and } Q=\text { constant in series circuit } \\ & V=\frac{450}{450+150} \times 6.0 \\ & \text { potential difference }=4.5(\mathrm{~V}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Allow: 1 mark for an answer of $1.5(\mathrm{~V})$ <br> Note: Using (b)(ii), alternative marking scheme $\begin{array}{ll} V=6.75 \times 10^{-4} / 150 \times 10^{-6} & \mathrm{C} 1 \\ V=4.5 \mathrm{~V} \end{array}$ |
|  |  | (ii) | $\begin{aligned} & \text { charge }=150 \times 10^{-6} \times 4.5 \\ & \text { charge }=6.75 \times 10^{-4}(\mathrm{C}) \end{aligned}$ | B1 | Possible e.c.f. <br> Note: Using (b)(iii) $\ldots Q=6.0 \times 1.125 \times 10^{-4}=6.75 \times 10^{-4}$ (C) |
|  |  | (iii) | $\frac{1}{C}=\frac{1}{150}+\frac{1}{450}($ working in $\mu \mathrm{F})$ capacitance $\mathrm{C}_{\mathrm{T}}=1.125 \times 10^{-4}(\mathrm{~F})$ or $113 \mu(\mathrm{~F})$ | B1 | Possible alternative: $\begin{aligned} & \text { capacitance }=6.75 \times 10^{-4} / 6.0 \\ & \text { capacitance }=1.125 \times 10^{-4}(\mathrm{~F}) \text { or } 113 \mu(\mathrm{~F}) \end{aligned}$ <br> Possible e.c.f. from (ii) |
|  | (c) | (i) | $\begin{aligned} & \text { time constant }=C R \\ & \text { time constant }=1.125 \times 10^{-4} \times 45 \times 10^{3} \\ & \text { time constant }=5.06(\mathrm{~s}) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$ | Note: The mark is for multiplying correct $C$ and $R$ values Possible e.c.f. from(b)(iii) |
|  |  | (ii) | Graph starting from 6.0 (V) <br> Correct shaped curve <br> Approximately correct value of $V$ at $C R$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Note: The (exponential decay) curve must not touch or cut the time axis <br> Note: $V$ is 2 to $2.5(\mathrm{~V})$ at $t \approx 5 \mathrm{~s}$ |


| Question | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| (iii) | $\begin{aligned} & \frac{1}{2} \times 4.5^{2} \times 150 \times 10^{-6} \text { and } \frac{1}{2} \times 1.5^{2} \times 450 \times 10^{-6} \\ & \text { ratio }=\frac{0.5 \times 4.5^{2} \times 150 \times 10^{-6}}{0.5 \times 1.5^{2} \times 450 \times 10^{-6}} \\ & \text { ratio }=3 \\ & \quad \text { Or } \\ & 1 / 2 Q^{2} / C_{150} \text { and } 1 / 2 Q^{2} / C_{450} \\ & \text { ratio }=C_{450} / C_{150} \\ & \text { ratio }=3 \end{aligned}$ | C1 <br> A1 <br> C1 <br> A1 | Allow: with or without the $10^{-6}$ <br> Possible e.c.f. from (b)(i) and (b)(ii) <br> Allow: full credit for correct use of either $1 / 2 Q V$ or $1 / 2 Q^{2} / C$ |
| (iv) | The ratio remains constant The charge / $Q$ is the same for both capacitors | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ |  |
|  | Total | 13 |  |

