Question		on	Answer	Marks	Guidance
1	(a)	(i)	Correct shape of (exponential) decay curve (labelled L)	B1	Note : The curve must show a gradient of decreasing magnitude as time increases and appear to have a finite value of V at $t = 0$ Ignore any levelling of the curve or $V = 0$ towards the end
		(ii)	Correct shape of curve (labelled H)	B1	Note : As (i) and this curve must show a smaller time constant than (i) ; the initial <i>V</i> can be different Note : One of the curves must be labelled
		(iii)	Correct explanation in terms of constant-ratio for <i>V</i> values for <u>fixed</u> intervals of <i>t</i>	B1	Allow <i>V</i> is halved every half-life; <i>V</i> decreases to 0.37 (of its initial value) after every time constant Note : This can be scored on a suitably labelled sketch graph in either (iii) or Fig. 4.1
	(b)	(i)	(time constant = $6.9 \times 10^{-6} \times 240$) time constant = 1.7×10^{-3} (s)	B1	Note : Answer to 3 sf 1.66×10^{-3} (s)
		(ii)	charge = $6.9 \times 10^{-6} \times 1.4$ (= 9.66×10^{-6} C) ($\Delta t = 1/120 = 0.0083$ s)	C1	Possible ecf from (b)(i) for value of total capacitance
			current = $\frac{6.9 \times 10^{-6} \times 1.4}{0.0083}$	C1	
			current = 1.2 × 10 ⁻³ (A)	A1	Note : Answer to 3 sf 1.16×10^{-3} (A) Allow : 2 marks for $9.66 \times 10^{-6} \times 60 = 5.8 \times 10^{-4}$ (A); $\Delta t = 1/60$ s used Allow : 2 marks for $9.66 \times 10^{-6} \times 240 = 2.3 \times 10^{-3}$ (A); $\Delta t = 1/240$ s used
		(iii)	 The capacitors do not fully discharge (AW) Any <u>one</u> from: Period (of switching) is (halved to) 4.2 × 10⁻³ (s) (and this time is comparable to the time constant) 	B1 B1	
			The time constant (of the circuit) and period of me- chanical switch are comparable / similar Total	9	

Question			Answers	Marks	Guidance
2	(a)		The time taken for the p.d / current / charge to decrease to 1/e of its (initial) value.	B1	Allow 37% instead of 1/ <i>e</i> . Not time constant = <i>CR</i> on its own.
	(b)		Any suitable values with units, eg: 5 $M\Omega$ and 1 $\mu\text{F}.$	B1	
	(c)	(i)	$R = \frac{4.9 \times 10^{-7} \times 5.0}{\pi \times (0.06 \times 10^{-3})^2} \text{or} R = 217 \ (\Omega)$ time constant = 0.010 × 217 time constant = 2.2 (s)	C1 C1 A1	 Note: An incorrect equation here for <i>A</i> prevents this and any subsequent marks. Allow 2 marks for 0.54 (s) – diameter of 0.12 mm used instead of radius 0.06 mm.
		(ii)	Electrons are removed from \mathbf{X} or electrons are deposited on \mathbf{Y} .	B1	Allow electrons move anticlockwise (in the circuit).
			X becomes positive or Y becomes negative	B1	There is no ecf from the previous B1 mark.
			(The size of charge is the same because) an equal num- ber of electrons are removed and deposited (on the plates).	B1	
		(iii)	$E = \frac{1}{2} \times 0.010 \times 12^2$ or $E = 0.72$ (J)	C1	
			$m = 8900 \times [\pi \times (0.06 \times 10^{-3})^2 \times 5.0]$ or $5.0(3) \times 10^{-4}$ (kg)	C1	Note : An incorrect equation here for <i>m</i> or <i>V</i> prevents this and any subsequent marks.
			$5.03 \times 10^{-4} \times 420 \times \Delta\theta = 0.72$	C1	Correct substitution into $mc\Delta\theta$ = 0.72; allow any subject.
			increase in temperature = 3.4 (°C)	A1	Note : Do not penalise using diameter here again if already penalised in (c)(i) .
		(iv)	Energy or V^2 increases by a factor of 4.	B1	Allow the label <i>E</i> or <i>W</i> for energy.
			The (change in temperature) increases by a factor of 4 (because $\Delta\theta \propto E$).	B1	Allow $\Delta \theta$ = 13.6 (°C) for this B1 mark - possible ecf from (iii).
			Total	14	

G	Question		Answer	Marks	Guidance
3	(a)		Series branch: Using $(100^{-1} + 300^{-1})^{-1}$ and $C = 75 (\mu F)$ capacitance = 500 + 75	C1	
			capacitance = 575 (μ F)	A1	Possible ecf, if capacitance of series branch is incorrect
	(b)	(i)	Time constant method: 37% of 6.0 V is 2.2 V. The time taken to reach 2.2 V is equal to the time constant		Note: Allow full credit for other correct methods
			time constant = 60 (s) / $CR = 60$ (s)	C1	Allow : time constant in the range 58 s to 62 s Deduct 1 mark for misreading graph followed by ecf
			$500 \times 10^{-6} \times R = 60$ $R = \frac{60}{500 - 10^{-6}}$	C1	
			resistance = 1.2×10^5 (Ω)	A1	Note : If C value from (a) is used, then deduct 1 mark followed by ecf
			Substitution method:		
			Correct values for p.ds and <i>t</i> substituted into $V = V_0 e^{-\frac{t}{CR}}$	C1	Eg : $2.2 = 6.0e^{-\frac{60}{CR}}$ - values read t ± 1 small square
			Correct values substituted into $\ln(V/V_0) = -\frac{t}{CR}$	C1	Eg: $\ln(2.2/6.0) = -\frac{60}{500 \times 10^{-6} \times R}$
			resistance = $1.2 \times 10^5 (\Omega)$	A1	Note : If C value from (a) is used, then deduct 1 mark followed by ecf. Using 575 (μ F) gives 1.04 × 10 ⁵ (Ω)
		(ii)	Correct p.ds from graph: 6 (V) and 3.6 (V) $\frac{1}{2} \times 500 \times 10^{-6} \times 6.0^2$ or $\frac{1}{2} \times 500 \times 10^{-6} \times 3.6^2$	C1 C1	Allow <i>V</i> value to be in the range 3.5 V to 3.7 at 30s
			energy lost = 5.76×10^{-3} (J) or 5.8×10^{-3} (J)	A1	Note : Do not penalise 10^{n} error from (b)(ii) again here Allow 1 mark for: $\frac{1}{2} \times 500 \times 10^{-6} \times (6.0 - 3.6)^{2} = 1.44 \times 10^{-3}$ (J)
					Note: Do not penalise use of 575 μF again. This gives a value of 6.62 $\times 10^{\text{-3}}$ (J)
			Total	8	

Question		on	Answer	Marks	Guidance
4	(a)		(farad = 1) coulomb per (unit) volt	B1	Allow: C V ⁻¹
	(b)	(i)	1/C	B1	Allow: 'inverse of C'
		(ii)	work (done) / energy	B1	
	(c)		Diagram : All 3 capacitors connected in series $\frac{1}{C} = \frac{1}{100} + \frac{1}{200} + \frac{1}{500} / \frac{1}{C} = 1.7 \times 10^{-2}$	B1 C1	Note : Correct symbol must be used for capacitor and at least one of the capacitance values (without the unit) must be shown
			capacitance = 59 (μF)	A1	Allow: Answer to 1 sf Note: Answer to 3sf is 58.8 (μ F) Allow: 1.7 × 10 ⁻² (μ F) scores 1 mark from the C1A1
	(d)	(i)	$Q = 0.040 \times 60$ charge = 2.4 (C)	C1 A1	Allow : 1 mark for 2.4×10^{n} , n \neq 0 (POT error)
		(ii)	energy = $\frac{1}{2} \times \frac{2.4^2}{0.10}$ energy = 29 (J)	C1 A1	Possible ecf from (d)(i) Note: Answer to 3 sf is 28.8 (J) Allow full credit for correct use of $\frac{1}{2}$ VQ or $\frac{1}{2}$ V ² C; the final p.d is 24 (V)
			Total	10	

Que	Question		Expected Answers	Marks	Additional guidance
5	(a)		capacitance = charge / potential difference	B1	Allow: p.d. and voltage Not: charge per volt or coulombs per p.d
	(b)	(i)	$V = Q/C \text{ and } Q = \text{ constant in series circuit}$ $V = \frac{450}{450 + 150} \times 6.0$ potential difference = 4.5 (V)	C1 A1	Allow: 1 mark for an answer of 1.5 (V) Note: Using (b)(ii), alternative marking scheme $V = 6.75 \times 10^{-4}/150 \times 10^{-6}$ C1 V = 4.5 V A1
		(ii)	charge = $150 \times 10^{-6} \times 4.5$ charge = 6.75×10^{-4} (C)	B1	Possible e.c.f. Note : Using (b)(iii) $Q = 6.0 \times 1.125 \times 10^{-4} = 6.75 \times 10^{-4}$ (C)
		(iii)	$\frac{1}{C} = \frac{1}{150} + \frac{1}{450} \text{ (working in } \mu\text{F)}$ capacitance C _T = 1.125 × 10 ⁻⁴ (F) or 113 µ(F)	B1	Possible alternative: capacitance = $6.75 \times 10^{-4}/6.0$ capacitance = 1.125×10^{-4} (F) or 113 µ(F) Possible e.c.f. from (ii)
	(c)	(i)	time constant = CR time constant = $1.125 \times 10^{-4} \times 45 \times 10^{3}$ time constant = 5.06 (s)	M1 A0	Note: The mark is for multiplying correct <i>C</i> and <i>R</i> values Possible e.c.f. from (b)(iii)
		(ii)	Graph starting from 6.0 (V)	B1	
			Correct shaped curve	B1	Note: The (exponential decay) curve must not touch or cut the time axis
			Approximately correct value of V at CR	B1	Note: <i>V</i> is 2 to 2.5 (V) at <i>t</i> ≈ 5 s

Question	Expected Answers	Marks	Additional guidance
(iii)	$\frac{1}{2} \times 4.5^{2} \times 150 \times 10^{-6} \text{ and } \frac{1}{2} \times 1.5^{2} \times 450 \times 10^{-6}$ ratio = $\frac{0.5 \times 4.5^{2} \times 150 \times 10^{-6}}{0.5 \times 1.5^{2} \times 450 \times 10^{-6}}$ ratio = 3 Or $\frac{1}{2} \frac{Q^{2}}{C_{150}} \text{ and } \frac{1}{2} \frac{Q^{2}}{C_{450}}$ ratio = C ₄₅₀ / C ₁₅₀ ratio = 3	C1 A1 C1 A1	Allow: with or without the 10 ⁻⁶ Possible e.c.f. from (b)(i) and (b)(ii) Allow: full credit for correct use of either ½QV or ½ Q ² /C
(iv)	The ratio remains constant The charge / Q is the same for both capacitors	B1 B1	
	Total	13	